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Abstract—Basis Pursuit (BP) and Basis Pursuit Denoising
(BPDN), well established techniques for computing sparse rep-
resentations, minimize an (> data fidelity term, subject to an
¢! sparsity constraint or regularization term, by mapping the
problem to a linear or quadratic program. BPDN with an /'
data fidelity term has recently been proposed, also implemented
via a mapping to a linear program. We introduce an alternative
approach via an Iteratively Reweighted Least Squares algorithm,
providing computational advantages and greater flexibility in the
choice of data fidelity term norm.

Index Terms—Image restoration, inverse problem, regulariza-
tion, total variation.

I. INTRODUCTION

A sparse representation is an adaptive signal decomposi-
tion consisting of a linear combination of atoms from an
overcomplete dictionary, where the coefficients of the linear
combination are optimized according to some sparsity crite-
rion. Applications of these representations include EEG (elec-
troencephalography) and MEG (magnetoencephalography) es-
timation [1], time-frequency analysis [2], spectrum estimation
[3], denoising [4], image coding [5], and cartoon/texture
decomposition of images [6].

One of the most well-known methods for computing such a
sparse representation is Basis Pursuit Denoising (BPDN) [4],
which consists of the minimization

o1 2
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where ||®u — bl|3 and ||ul|, are known as the fidelity term
and the sparsity term respectively, b is the signal to be
decomposed, P is the (overcomplete) dictionary matrix, A is a
weighting factor controlling the relative importance of the data
fidelity and sparsity terms, and u is the sparse representation.
This optimization problem is mapped to a quadratic program,
which is solved via interior point methods. An alternative
approach [1], [7] is to solve
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where ¢ < 1, via a form of the Iteratively Reweighted Least
Squares (IRLS) [8] method.

Total Variation (TV) regularization methods [9] of denoising
and image restoration are closely related to BPDN (and
directly equivalent for 1-d signals). Recently, there has been
significant interest in TV functionals with an ¢! data fidelity
term [10], [11], with advantages including superior denoising
performance with speckle noise. Granai and Vandergheynst
[12] have observed that these advantages are also applicable
to sparse representations, and proposed a variant of BPDN
with ¢! data fidelity term

min [[®u — b}, + Afjull, , 3)

solved by mapping it to a linear program (as proposed by Fu
et. al. [11]). While elegant, this approach is computationally
expensive, since a BPDN problem in M unknowns, with ®, an
N x M dictionary matrix (generally overcomplete, i.e.: M >
N), is mapped to a linear program in 2(N + M) unknowns.

Here, we propose a more computationally efficient algo-
rithm, motivated by our Iteratively Reweighted Norm (IRN)
[13], [14] approach for ¢'-TV (and which may also be
considered a generalization of the AST/FOCUSS algorithms
for BPDN [1], [7]), capable of solving the more general form
of BPDN
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which includes both the standard BPDN (see (1) and (2)) and
¢! data fidelity term BPDN (see (3)) as special cases.

II. IRN-BPDN ALGORITHM
A. Previous Related Work

The IRN approach is closely related to the Iteratively
Reweighted Least Squares (IRLS) method [15], [8], [16],
[17], [18]. Similar ideas have also been applied [19], [7] to
solving the standard BP and BPDN problems [4] for sparse
representations.

IRLS minimizes the /P norm
P

F(u) = 1H@ub 3)
b

P
for p < 2 by approximating it, within an iterative scheme, by
a weighted ¢2 norm. At iteration k the solution u(®) is the
minimizer of %HW(’“)W((I)u — b)||%, with weighting matrix
W®*) = diag (|®u®) — b|P=2), and the iteration

u+D) = (@TW(’“)@)A T W kp,



which minimizes the weighted version of (5) using the weights
derived from the previous iteration, converges to the minimizer
of F(u) [18].

When p < 2, the definition of the weighting matrix T (*)
must be modified to avoid the possibility of division by zero.
For p = 1, it may be shown [17] that the choice

Wik = {

where r*) = ®du®¥) — b, and € is a small positive number,
guarantees global convergence to the minimizer of ) pc(ry),
where

1L p ] > e

et if | <e,

e 1r2 if |r,| <€

2rp| —€ if |rn| > €2

pe(rn) = {

is the Huber function [20].

B. Fidelity Term

The data fidelity term of the generalized BPDN functional
(4) is the same as the term that the IRLS functional (5) seeks
to minimize. In order to replace the /7 norm by a /2 norm,
we define the quadratic functional

1/2
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%k)(u) = ZHW}k) (Pu —b) +(1 — g) F(u(k))7 (6)
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where ul®) is a constant representing the solution of the

previous iteration, F'(-) is defined in (5), and
Wi = diag (i, (A ~ b)) (7)

Following a common strategy in IRLS type algorithms [8], the
function

|z|P=2 if |z| > ep
et |a] < ep,

TFep(T) = { (®)
is defined (for some small €r) to avoid numerical problems
when p < 2 and Au'®) — b has zero-valued components.
The constant (with respect to u) term (1 — 2) F(u®) is
added in (6) so that, neglecting numerical precision issues in
(6) and (7),
F(u®) = Qi (u®) ©)

as e — 0. In other words, the weighted ¢2 norm tends to the
original /7 norm fidelity term at u = u(*). The bound (see

the appendix of [18])
F(u) < Q¥ (u) vu#u® p<2, (10)

and the Fréchet derivatives for F'(u) and ng)(u)

VuF(u) = &7 (du—b)"!
VuQ¥(w) = oTW (du-b).

play an important role in the convergence proof in Section II-E.
Observe also that

VuF ()] gat = Va@QW (W) yruwm (11)

when e — 0, and note that the original fidelity term in (5) and
its quadratic version in (6) have the same value and tangent
direction at u = u(®),
C. Sparsity Term

The sparsity term in (4)

1
Su) = Zllallg (12)
is handled similarly. We define the quadratic functional
1 12 |2
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2

where ul®) is a constant representing the solution of the
previous iteration, and

Wék) = diag (7’5765(u(k))) .

Following the strategy described in [7] 7g,c, is defined (for
some small €g) as

(14)
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where the choice 7g ., (x) = 0 for |z| < eg will be further
discussed in Section II-D.

Note that the constant (with respect to wu) term
(1 — %) S(u®) is added in (13) to ensure that as eg — 0

if ‘.%'| > €9

if |z| <eg, (15

S®) = g’ (™), (16)
and the bound
S(u) < ng)(u) vu#u® ¢ <2 (17)

is easily proven, following a similar approach as described in
the appendix of [18]). It is straightforward to compute the the
Fréchet derivatives for S(u) and Q(Sk)(u)

VuaSu) = u?!
VuQP () = W,

and note that

VS (W) |yeu® = VaQS (W) yeu

when eg — 0. As for the fidelity term, it is important to note
that the original sparcity term (12) and its quadratic version
(13) have the same value and tangent direction at u = ulk),

(18)

D. Algorithm Derivation

For improved readability, this derivation focuses on the ¢!
BPDN case, but the general case of /7 BPDN is a trivial
extension. Combining the terms described in Sections II-B and
II-C gives the functional (compare it to (3))

2
+C (),

1 1/2
T® () = 5 HW}’” % (@u—b)
2

2
A 1/2
2

where C’(u(k)) combines the constants, with respect to u, in
(6) and (13).



Initialize
u® = 7 (07 + A1) b
Iterate £ =0, 1, ..

—1
W}(,k) = [diag (TF,gF((I)u(k) - b))}

WI(%k) - [diag (Tgﬁs (u(k)>) } _

—1
X = (ew{MeT aw) b
u(’f-‘rl) — Wék)¢TX(k)

Algorithm 1: IRN-BPDN algorithm

The first step is to move the weighting (diagonal) matrix
Wék) from the sparsity term into the fidelity term; this can be

1/2
accomplished by setting u = Wék) / v, giving (we neglect
the constant term C(u(®)))

6 1/2

X 1 -1/2
T(k)(y> =3 HWI(T) )~/

2

k k1/2 )\ 2
W v-wH "p +5 13-
2

(20)

It is important to note that the expressions involving Wé.k)

. . . . (k)~1/2 (k)1
raised to a negative power (in particular W or Wy )

do not generate a division by zero (see (14), (15)) since the
¢4-norm in the sparsity term is restricted to cases with ¢ < 2.
Computing the gradient (Fréchet derivative) of (20) and setting
it to zero gives

—1/2 —1/2 -1
w® T Ty B e, Y

~1/2
Wék) &7y, and factoring out

Now, setting v =
—1/2
WP TP gives
—1/2 —1 —1
W Ty ®) (ew? oTx — b+ AW x) =0,

Finally, we find the minimum to (19) by solving

-1 1y 1
x= (oW T o) b @1

and then substituting for v and u.
It is interesting to note that (19) may be rewritten as

_ 2
7 ) (u) = 1 HW(k)l/z (<I>u — b) H + C(u(k)), (22)
2 2
where

(k)
w_ (WP 0\ o (@ - (b

which has the same form as a standard IRLS problem, but
differs in the computation of the weighting matrix.

The IRN-BPDN algorithm is summarized in Algorithm 1.
The initial solution is the minimum ¢2 norm solution obtained
by setting the weighting matrices to identity matrices.

2
"W P b+ = 0.

E. Convergence of the IRN-BPDN algorithm

Here we briefly sketch the proof of global convergence of
the IRN-BPDN algorithm. We first note that from (9) and
(16) it is easy to check that T'(u®)) = T (uk)), where
T(u) = % |[®u — b7 + % [ul|? (see (4)), T®)(u) is defined
in (19) and u®® is the vector used to compute the weights
W}k) and Wék). Moreover, from (10) and (17) we have that

T(u) <T®(u) Yu p,q <2

with equality only for u = u®. It is also easy to check (see
(11) and (18)) that

VuT(u)‘u:u(k) = VuT(k)(u”u:u(k). (23)

Furthermore the Hessian of 7(*)(u)
V2T® (u) = dTW P o + AW

is a positive defined matrix (i.e.. V2T (u) > 0) as well as

-1 -1
the linear system defined in (21): @Wék) o7 + )\Wék) >
0

The quadratic functional 7*)(u) is tangent to T'(u) at u =
u®) | where it is also an upper bound for T(u), and it has
a positive definite Hessian. Using these results (see [18]), it
can be shown that the minimizer of 7)(u), given by (21)

-1/2 1
with v = W "oy and u = W
minimizer of (4) as we iterate over k.

v converges to the

III. COMPUTATIONAL RESULTS

From a computational point of view, the main advantage
of the IRN-BPDN algorithm over a mapping into a linear
program of the original problem (see (3)) is the size of the
linear system to be solved: if the original BPDN problem has
M unknowns, with a N x M dictionary matrix, the linear
system to be solved (in the case of IRN-BPDN, the linear
system is described in (21)) will have M (not N) unknowns,
whereas, if (3) is mapped to a linear program, the linear system
to be solved will have 2(IN 4+ M) unknowns.

Here were provide empirical evidence of the superior
computational performance of the proposed algorithm, when
compared to the linear programming approach [12]. The IRN-
BPDN algorithm was implemented in Matlab (code available
in [21]), as was the linear programming method, which utilized
the SparseLab [22] Matlab toolbox, with some minor modi-
fications to handle 2-dimensional datasets. The comparisons
were run on a 3GHz Pentium4 machine.

We chose a cubic phase cosine image with sizes 16 x 16,
32 x 32, 64 x 64 and 128 x 128 (see Figure 1 for the in
128 x 128 case) and we add 5% speckle noise in each case (see
Figure 2 for the in 128 x 128 case) and performed /!-BPDN
using a DCT dictionary with an overcompleteness factor of
4. Both procedures (IRN-BPDN and mapping into a linear
program) give similar results from a quality (SNR) point of
view; in general the solution given by the linear program have
a better SNR for small problems than the solution found by
the IRN-BPDN algorithm. The gap (in the SNR) between the



Fig. 1.

128 x 128 Cubic phase image.

solutions provided by both algorithms decreases as the size of
the problem increases; this has been empirically confirmed
by simulations run over 1-dimensional datasets and for 2-
dimensional datasets we expect a similar behavior.

The time-performance of the IRN-BPDN is far superior
to the procedure described in [12]: for a 16 x 16 image,
IRN-BPDN requires 2.02 seconds to solve the /!-BPDN
problem, whereas the procedure described in [12] requires
28.09 seconds; for a 32 x 32 image IRN-BPDN requires 8.13
seconds while the procedure described in [12] requires 303.39
seconds. Note the difference in the scaling factor is due to
the size of the linear system to be solved in each case. For
input sizes of 64 x 64 and 128 x 128 IRN-BPDN takes 36.31
and 199.97 seconds respectively, while the implementation of
the procedure described in [12] written by the authors was
unable to finish: for a 64 x 64 input image and using a DCT
dictionary with an overcompleteness factor of 4, [12] will
generate 2*(64*64 + 16*64*64) = 139264 unknowns (557056
unknowns for the 128 x 128 case). This results are summarized
in Table L.

TABLE I
TIME-PERFORMANCE COMPARISON BETWEEN IRN-BPDN AND ¢!-BPDN
IMPLEMENTED VIA MAPPING TO A LINEAR PROGRAM [12].

| Image size [| 16 x 16 [ 32 x 32 | 64 x 64 | 128 x 128
IRN-BPDN 2.0s 8.1s 36.3s 200.0s
LP /T-BPDN 28.1s | 3034s n/a n/a

Figures 3(a), and 3(b) display denoising results for standard
¢1-TV (included for the sake of quality assessment), and ¢!
BPDN via the proposed algorithm. Note that even though the
¢1-TV result has a slightly higher SNR than BPDN with /!
data fidelity term, the latter has a superior visual quality.

I'V. CONCLUSIONS
As previously noted [12], [11], ¢ BPDN (and related
problems) provide superior performance to the corresponding
¢? versions in certain applications. The proposed IRN-BPDN
algorithm provides a flexible and computationally efficient

Fig. 2. Cubic image with 5% speckle noise. SNR: 9.91dB.

means of solving the generalized BPDN problem, including
the /! BPDN problem. The computational advantages of IRN-
BPDN are such that this method may be applied to problem
sizes that are impractical via the technique of mapping to a
linear program.
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